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Abstract—Recently, several competing smart home program-
ming frameworks that support third party app development
have emerged. These frameworks provide tangible benefits to
users, but can also expose users to significant security risks.
This paper presents the first in-depth empirical security analysis
of one such emerging smart home programming platform. We
analyzed Samsung-owned SmartThings, which has the largest
number of apps among currently available smart home platforms,
and supports a broad range of devices including motion sensors,
fire alarms, and door locks. SmartThings hosts the application
runtime on a proprietary, closed-source cloud backend, making
scrutiny challenging. We overcame the challenge with a static
source code analysis of 499 SmartThings apps (called SmartApps)
and 132 device handlers, and carefully crafted test cases that
revealed many undocumented features of the platform. Our key
findings are twofold. First, although SmartThings implements a
privilege separation model, we discovered two intrinsic design
flaws that lead to significant overprivilege in SmartApps. Our
analysis reveals that over 55% of SmartApps in the store are
overprivileged due to the capabilities being too coarse-grained.
Moreover, once installed, a SmartApp is granted full access to a
device even if it specifies needing only limited access to the device.
Second, the SmartThings event subsystem, which devices use to
communicate asynchronously with SmartApps via events, does
not sufficiently protect events that carry sensitive information
such as lock codes. We exploited framework design flaws to
construct four proof-of-concept attacks that: (1) secretly planted
door lock codes; (2) stole existing door lock codes; (3) disabled
vacation mode of the home; and (4) induced a fake fire alarm.
We conclude the paper with security lessons for the design of
emerging smart home programming frameworks.

I. INTRODUCTION

Smart home technology has evolved beyond basic conve-

nience functionality like automatically controlled lights and

door openers to provide several tangible benefits. For instance,

water flow sensors and smart meters are used for energy

efficiency. IP-enabled cameras, motion sensors, and connected

door locks offer better control of home security. However,

attackers can manipulate smart devices to cause physical,

financial, and psychological harm. For example, burglars can

target a connected door lock to plant hidden access codes, and

arsonists can target a smart oven to cause a fire at the victim’s

home [12].

Early smart home systems had a steep learning curve,

complicated device setup procedures, and were limited to

do-it-yourself enthusiasts.1 Recently, several companies have

introduced newer systems that are easier for users to setup,

are cloud-backed, and provide a programming framework for

third-party developers to build apps that realize smart home

1Many forums exist for people to exchange know-how e.g., http://forum.
universal-devices.com/.

benefits. Samsung’s SmartThings [27], Apple’s HomeKit [7],

Vera Control’s Vera3 [1], Google’s Weave/Brillo [18], and

AllSeen Alliance’s2 AllJoyn [3] are several examples.

The question we pose is the following: In what ways are

emerging, programmable, smart homes vulnerable to attacks,

and what do these attacks entail? It is crucial to address this

question since the answer will initiate and guide research into

defenses before programmable smart homes become common-

place. Vulnerabilities have been discovered in individual high-

profile smart home devices [17], [19], and in the protocols that

operate between those devices, such as ZWave and ZigBee [9],

[21]. However, little or no prior research investigated the

security of the programming framework of smart home apps

or apps themselves.

We perform, to the best of our knowledge, the first security

analysis of the programming framework of smart homes.

Specifically, we empirically evaluate the security design of a

popular programmable framework for smart homes—Samsung

SmartThings. We focus on the programming framework since

it is the substrate that unifies applications, protocols, and

devices to realize smart home benefits. Attackers can remotely

and covertly target design flaws in the framework to realize

the emergent threats outlined earlier.

We chose SmartThings for several reasons. First, at the

time of writing, SmartThings has a growing set of apps—

521 apps called SmartApps, with the distant second being

Vera that has 204 Lua-based apps on the MiOS store [1].

Other competing frameworks like HomeKit, Weave/Brillo, and

AllJoyn are in formative stages with less than 50 apps each.

Second, SmartThings has native support for 132 device types

from major manufacturers. Third, SmartThings shares key se-

curity design principles with other frameworks. Authorization

and authentication for device access is essential in securing

smart home app platforms and SmartThings has a built-in

mechanism to protect device operations against third-party

apps through so called capabilities. Event-driven processing

is common in smart home applications [30], and SmartThings

provides ways for apps to register callbacks for a given event

stream generated by a device. Other platforms support event-

driven processing too. For instance, AllJoyn supports the bus

signal [2], and HomeKit provides the characteristic notifica-

tion API [6]. Therefore, we believe lessons learned from an

analysis of the SmartThings framework will inform the design

of security-critical components of many programmable smart

home frameworks in early design stages.

2AllSeen members include Qualcomm, Microsoft, LG, Cisco, and AT&T.
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The SmartThings framework recognizes the potential for

security vulnerabilities and incorporates several security mea-

sures. SmartThings has a privilege separation mechanism

called capabilities that specify the set of operations a Smart-

App may issue to a compatible smart home device. SmartApps

are provided secure storage, accessible only to the app itself.

Developers write SmartApps in a security-oriented subset of

Groovy. The Groovy-based apps run in a sandbox that denies

operations like reflection, external JARs, and system APIs.

The OAuth protocol protects third-party integrations with

SmartApps. SmartThings provides a capability-protected event

subsystem for SmartApps and device handlers to communicate

asynchronously.

Our security analysis explores the above security-oriented

aspects of the SmartThings programming framework. Per-

forming the security analysis was challenging because the

SmartThings platform is a closed-source system. Furthermore,

SmartApps execute only in a proprietary, SmartThings-hosted

cloud environment, making instrumentation-based dynamic

analysis difficult. Because there is no publicly-available API

to obtain SmartApp binaries, binary analysis techniques too,

are inapplicable.

To overcome these challenges, we used a combination of

static analysis tools that we built, runtime testing, and manual

analysis on a dataset of 499 SmartApps and 132 device

handlers that we downloaded in source form. Our analysis

tools are available at https://iotsecurity.eecs.umich.edu.

Our Contributions. We discovered security-critical design

flaws in two areas: the SmartThings capability model, and the

event subsystem.

We found that SmartApps were significantly overprivileged:

(a) 55% of SmartApps did not use all the rights to device

operations that their requested capabilities implied; and (b)

42% of SmartApps were granted capabilities that were not
explicitly requested or used. In many of these cases, overpriv-

ilege was unavoidable, due to the device-level authorization

design of the capability model and occurred through no fault

of the developer (§IV-A, §V-B). Worryingly, we have observed

that 68 existing SmartApps are already taking advantage of the

overprivilege to provide extra features, without requesting the

relevant capabilities.

We studied the SmartThings event subsystem and discov-

ered that: (a) An app does not require any special privilege

to read all events a device generates if the app is granted at

least one capability the device supports; (b) Unprivileged apps

can read all events of any device using only a leaked device

identifier; and (c) Events can be spoofed (§IV-B).

We exploited a combination of design flaws and framework-

induced developer-bugs to show how various security prob-

lems conspire to weaken home security. We constructed four

proof-of-concept attacks:

• We remotely exploited an existing SmartApp available

on the app store to program backdoor pin-codes into

a connected door lock (§VI-A). Our attack made use

of the lockCodes capability that the SmartApp never

requested—the SmartApp was automatically overprivi-

leged due to the SmartThings capability model design.

• We eavesdropped on the event subsystem to snoop on

lock pin-codes of a Schlage smart lock when the pin-

codes were being programmed by the user, and leaked

them using the unrestricted SmartThings-provided SMS

API. Our attack SmartApp advertises itself as a battery

monitor and only requests the battery monitoring capa-

bility.

• We disabled an existing vacation mode SmartApp avail-

able on the app store using a spoofed event to stop

vacation mode simulation (§VI-C). No capabilities were

required for this attack.

• We caused a fake fire alarm using a spoofed physical de-

vice event (§VI-D). The attack shows how an unprivileged

SmartApp can escalate its privileges to control devices it

is not authorized to access by misusing the logic of benign

SmartApps.

All of the above attacks expose a household to significant

harm—break-ins, theft, misinformation, and vandalism. The

attack vectors are not specific to a particular device and are

broadly applicable.

Finally, in our forward looking analysis, we distilled the key

lessons to constructing secure and programmable smart home

frameworks. We couple the lessons with an exploration of the

pros and cons of the trade-offs in building such frameworks.

Our analysis suggests that, although some problems are readily

solvable, others require a fine balancing of several techniques

including designing risk-based capabilities and identity mech-

anisms (§VII).

II. RELATED WORK

Smart Home Security. Denning et al. outlined a set of

emergent threats to smart homes due to the swift and steady

introduction of smart devices [12]. For example, there are

threats of eavesdropping and direct compromise of various

smart home devices. Denning et al. also discussed the structure

of attacks that include data destruction, illegal physical entry,

and privacy violations, among others. Our work makes some

of these risks concrete and demonstrates how remote attackers

can weaken home security in practice. Although we are not

the first in recognizing security risks of the modern home, we

present the first study of the security properties of emerging

smart home applications and their associated programming

interfaces.

Current smart home security analyses are centered around

two themes: devices and protocols. On the device front, the

MyQ garage system can be turned into a surveillance tool that

informs burglars when the house is possibly empty; the Wink

Relay touch controller’s microphone can be switched on to

eavesdrop on conversations; and the Honeywell Tuxedo touch

controller has authentication bypass bugs and cross-site request

forgery flaws [17], [19]. Oluwafemi et al. caused compact

florescent lights to rapidly power cycle, possibly inducing

seizures in epileptic users [23]. Ur et al. studied access control

of the Philips Hue lighting system and the Kwikset door lock,
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among others, and found that each system provides a siloed

access control system that fails to enable essential use cases

such as sharing smart devices with other users like children

and temporary workers [29]. In contrast, we study emerging

applications and the associated attack vectors of a smart home

programming platform, that are largely independent of the

specific devices in use at a home.

On the protocol front, researchers demonstrated flaws in the

ZigBee and ZWave protocol implementations for smart home

devices [9], [21]. Exploiting these bugs requires proximity

to the target home. We demonstrated design flaws in the

programming framework that can be used in attacks that do not

require physical access to the home. Furthermore, our remote

attacks are independent of the specific protocols in use.

Veracode performed a security analysis of several smart

home hubs, including SmartThings [32]. The security analysis

focused on infrastructure protection such as whether SSL/TLS

is used, whether there is replay attack protection, and whether

strong passwords are used. The Veracode study found that the

SmartThings hub had correctly deployed all studied infrastruc-

tural security mechanisms with the exception of an open telnet

debugging interface on the hub, which has since been fixed. In

contrast, we perform an empirical analysis of the SmartThings

platform and its applications to discover framework design

flaws.

Overprivilege and Least-Privilege. The principle of least

privilege is well-known and programming frameworks should

be designed to make it easier to achieve. In practice, however,

it can be difficult to achieve, as evidenced most recently by

research in smartphones, where Felt et al. conducted a market-

scale overprivilege analysis for Android apps and determined

that one-third of 940 apps were overprivileged [13], citing

developer confusion as one prime factor for overprivileged

Android apps. Our work is along similar lines except that we

analyzed a relatively closed system in which the apps only run

on a proprietary cloud backend and control devices in a home

via a proprietary protocol with the hub over SSL-protected

sessions. We found that much of the overprivilege is not due

to developer confusion but due to the framework design itself.

Au et al. designed PScout, a static analysis framework

for Android source code to produce complete permission

specifications for different Android versions [8]. We used static

analysis on SmartApp source code to compute overprivilege.

However, unlike PScout, we could not use static analyses to

complete capability documentation because the SmartThings

runtime is closed-source. Instead, we relied on analyzing the

protocol operating between the SmartThings backend and the

client-side Web IDE.

Permission/Capability Model Design. Roesner et al. intro-

duced User-Driven Access Control where the user is kept in

the loop, at the moment an app uses a sensitive resource [24],

[25]. For instance, a remote control door lock app should only

be able to control a door lock in response to user action.

However, certain device types and apps are better suited to

install-time permissions. Felt et al. introduced a set of guide-

lines on when to use different types of permissions [14]. Our

work evaluates the effectiveness of the SmartThings capability

model in protecting sensitive device operations from malicious

or benign-but-buggy SmartApps. We leave determining the

grant modality of capabilities to future work.

III. SMARTTHINGS BACKGROUND AND THREAT MODEL

We first describe the SmartThings platform architecture

and then discuss our threat model. Little is known about the

architectural details of SmartThings besides the developer doc-

umentation. Therefore, we also discuss the analysis techniques

we used to uncover architectural aspects of SmartThings when

appropriate.

A. SmartThings Background

The SmartThings ecosystem consists of three major compo-

nents: hubs, the SmartThings cloud backend, and the smart-

phone companion app (see Figure 1). Each hub, purchased

by a user, supports multiple radio protocols including ZWave,

ZigBee, and WiFi to interact with physical devices around

the user’s home. Users manage their hubs, associate devices

with the hubs, and install SmartApps from an app store using

the smartphone companion app (called SmartThings Mobile).

The cloud backend runs SmartApps. The cloud backend also

runs SmartDevices, which are software wrappers for physical

devices in a user’s home. The companion app, hubs, and

the backend communicate over a proprietary SSL-protected

protocol. Although there are no publicly available statistics

on the size of SmartThings user base, as a rough measure

of scale of adoption, we observe that there are 100K—500K

installations of the Android version of the companion app as

of March 2016 from the Google Play Store.

SmartApps and SmartDevices communicate in two ways.

First, SmartApps can invoke operations on SmartDevices via

method calls (e.g., to lock a door lock). Second, SmartApps

can subscribe to events that SmartDevices or other SmartApps

can generate. A SmartApp can send SMSs and make network

calls using SmartThings APIs. SmartDevices communicate

with the hub over a proprietary protocol.

1) SmartApps and SmartDevices: A programming frame-

work enables creating SmartApps and SmartDevices, that are

written in a restricted subset of Groovy3, a language that com-

piles to Java bytecode. Since SmartApps and SmartDevices

execute on the closed-source cloud backend, SmartThings pro-

vides a Web-based environment, hosted on the cloud backend,

for software development.

SmartApps and SmartDevices are published to the Smart-

Things app store that is accessible via the SmartThings com-

panion app (Figure 1). In addition to this main app store, there

is a secondary store where developers make their software

available in source code form.

Under the hood, a SmartApp does not directly communicate

with a physical device. Instead, it communicates with an

instance of a SmartDevice that encapsulates a physical device.

A SmartDevice manages the physical device using lower level

3http://www.groovy-lang.org/
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Fig. 1. SmartThings architecture overview.

1 definition(
2 name: "DemoApp", namespace: "com.testing",
3 author: "IoTPaper", description: "Test App",
4 category: "Utility")
5

6 //query the user for capabilities
7 preferences {
8 section("Select Devices") {
9 input "lock1", "capability.lock", title:

"Select a lock"
10 input "sw1", "capability.switch", title:

"Select a switch"
11 }
12 }
13

14 def updated() {
15 unsubscribe()
16 initialize()
17 }
18

19 def installed() {
20 subscribe sw1, "switch.on", onHandler
21 subscribe sw1, "switch.off", offHandler
22 }
23

24 def onHandler(evt) {
25 lock1.unlock()
26 }
27

28 def offHandler(evt) {
29 lock1.lock()
30 }

Listing 1. SmartApp structure.

protocols (for example, ZWave and ZigBee), and exposes the

physical device to the rest of the SmartThings ecosystem.

Next, we explain the key concepts of the programming

framework. Listing 1 shows an example SmartApp that locks

and unlocks a physical door lock based on the on/off state of

a switch. The SmartApp begins with a definition section

that specifies meta-data such as SmartApp name, namespace,

author details, and category.

2) Capabilities & Authorization: SmartThings has a secu-

rity architecture that governs what devices a SmartApp may

access. We term it as the SmartThings capability model. A

capability is composed of a set of commands (method calls)

TABLE I
EXAMPLES OF CAPABILITIES IN THE SMARTTHINGS FRAMEWORK

Capability Commands Attributes
capability.lock lock(), unlock() lock (lock status)

capability.battery N/A battery (battery status)

capability.switch on(), off() switch (switch status)

capability.alarm off(), strobe(),
siren(), both()

alarm (alarm status)

capability.refresh refresh() N/A

and attributes (properties). Commands represent ways in which

a device can be controlled or actuated. Attributes represent the

state information of a device. Table I lists example capabilities.

Consider the SmartApp in Listing 1. The preferences
section has two input statements that specify two capabilities:

capability.lock and capability.switch. When a

user installs this SmartApp, the capabilities trigger a device
enumeration process that scans all the physical devices cur-

rently paired with the user’s hub and, for each input statement,

the user is presented with all devices that support the specified

capability. For the given example, the user will select one

device per input statement, authorizing the SmartApp to use

that device. Figure 2 shows the installation user interface for

the example SmartApp in Listing 1.

Once the user chooses one device per input statement, the

SmartThings compiler binds variables lock1 and sw1 (that

are listed as strings in the input statements) to the selected

lock device and to the selected switch device, respectively.

The SmartApp is now authorized to access these two devices

via their SmartDevice instances.

A given capability can be supported by multiple de-

vice types. Figure 3 gives an example. SmartDevice1 con-

trols a ZWave lock and SmartDevice2 controls a mo-

tion sensor. SmartDevice1 supports the following capa-

bilities: capability.lock, capability.battery,
and capability.refresh. SmartDevice2 supports a

slightly different set of capabilities: capability.motion,
capability.battery, and capability.refresh.

Installing a battery-monitoring SmartApp that requests

capability.battery would result in the user being

asked to choose from a list of devices consisting of the ZWave

lock and the motion sensor. An option is available in the

input statement to allow the named variable to be bound to a

list of devices. If such a binding were done, a single battery

monitoring SmartApp can monitor the battery status of any

number of devices.

3) Events and Subscriptions: When a SmartApp is first

installed, the predefined installed method is invoked. In

the SmartApp of Listing 1, installed creates two event
subscriptions to switch sw1’s status update events (Lines 20,

21). When the switch is turned on, the switch SmartDevice

raises an event that causes the function onHandler to

execute. The function unlocks the physical lock corresponding

to lock1 (Line 25). Similarly, when the switch is turned off,

the function offHandler is invoked to lock the physical

lock corresponding to lock1 (Line 29).

639639
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Fig. 2. Installation user interface and device enumeration: This example
shows that an app asks for devices that support capability.lock and
capability.switch. The screen on the right results when the user taps
on the first input field of the screen on the left. SmartThings enumerates all
lock devices (there is only one in the example). The user must choose one or
more devices that the app can access.

4) WebService SmartApps: SmartApps can choose to ex-

pose Web service endpoints, responding to HTTP GET, PUT,

POST, and DELETE requests from external applications.

HTTP requests trigger endpoint handlers, specified by the

SmartApp, that execute developer-written blocks of Groovy

code.

For securing the Web service endpoints, the cloud backend

provides an OAuth-based authentication service. A SmartApp

choosing to provide Web services is registered with the

cloud backend and is issued two 128-bit random values: a

client ID and client secret. The SmartApp developer typi-

cally also writes the external app that will access the Web

service endpoints of the SmartApp. An external app needs

the following to access a SmartApp: (a) possess or obtain

the client ID and client secret for the SmartApp; and (b)

redirect the user to an HTTPS-protected Webpage on the

SmartThings Website to authenticate with the user-specific

user ID and password. After a multi-step exchange over

HTTPS, the external app acquires a scoped OAuth bearer

token that grants access to the specific SmartApp for which

the client ID and client secret were issued. Details of the

entire SmartThings authentication protocol for access to Web

services can be found at http://docs.smartthings.com/en/latest/

smartapp-web-services-developers-guide/overview.html.

5) Sandboxing: SmartThings cloud backend isolates both

SmartApps and SmartDevices using the Kohsuke sandbox

technique [20]. We determined this using manual fuzzing—

we built test SmartApps that tried unauthorized operations

and we observed the exception traces. Kohsuke sandboxing

is an implementation of a larger class of Groovy source

code transformers that only allow whitelisted method calls to

succeed in a Groovy program. For example, if an app issues a

threading call, the security monitor denies the call (throwing a

Fig. 3. SmartApps vs. SmartDevices vs. Physical Devices: When a user
installs this SmartApp, SmartThings will show the lock and the motion
sensor since both the corresponding device handlers (SmartDevice1 and
SmartDevice2) expose the requested capability.

security exception) since threading is not on the SmartThings

whitelist. Apps cannot create their own classes, load external

JARs, perform reflection, or create their own threads. Each

SmartApp and SmartDevice also has a private data store.

In summary, from a programming perspective, SmartApps,

SmartDevices, and capabilities are key building blocks. Capa-

bilities define a set of commands and attributes that devices

can support and SmartApps state the capabilities they need.

Based on that, users bind SmartDevices to SmartApps.

B. Threat Model

Our work focuses on systematically discovering and exploit-

ing SmartThings programming framework design vulnerabili-

ties. Any attacks involving a framework design flaw are within

scope. We did not study attacks that attempt to circumvent the

Groovy runtime environment, the on-hub operating system,

or the cloud backend infrastructure. Bugs in those areas can

be patched. In contrast, attacks focused on design flaws have

more far-reaching impact since programming frameworks are

difficult to change without significant disruption once there is

a large set of applications that use the framework.

IV. SECURITY ANALYSIS OF SMARTTHINGS FRAMEWORK

We investigated the security of the SmartThings framework

with respect to five general themes. Our methodology involved

creating a list of potential security issues based on our study

of the SmartThings architecture and extensively testing each

potential security issue with prototype SmartApps. We survey

each investigation below and expound each point later in this

section.

1) Least-privilege principle adherence: Does the capabil-

ity model protect sensitive operations of devices against

untrusted or benign-but-buggy SmartApps? It is important

to ensure that SmartApps request only the privileges they

need and are only granted the privileges they request.

However, we found that many existing SmartApps are

overprivileged.

2) Sensitive event data protection: What access control

methods are provided to protect sensitive event data gen-

erated by devices against untrusted or benign-but-buggy

640640

Authorized licensed use limited to: Imperial College London. Downloaded on February 01,2024 at 16:36:47 UTC from IEEE Xplore.  Restrictions apply. 



SmartApps? We found that unauthorized SmartApps can

eavesdrop on sensitive events.

3) External, third-party integration safety: Do Smar-

tApps and third-party counterpart apps interact in a secure

manner? Insecure interactions increase the attack surface

of a smart home, opening channels for remote attackers.

Smart home frameworks like SmartThings should limit

the damage caused in the event of third-party security

breaches. We found that developer bugs in external plat-

forms weaken system security of SmartThings.

4) External input sanitization: How does a WebService

SmartApp protect itself against untrusted external input?

Similar to database systems and Web apps, smart home

apps too, need to sanitize untrusted input. However,

we found that SmartApp endpoints are vulnerable to

command injection attacks.

5) Access control of external communication APIs: How

does the SmartThings cloud backend restrict external

communication abilities for untrusted or benign-but-

buggy SmartApps? We found that Internet access and

SMS access are open to any SmartApps without any

means to control their use.

A. Occurrence of Overprivilege in SmartApps

We found two significant issues with overprivilege in the

SmartThings framework, both an artifact of the way its ca-

pabilities are designed and enforced. First, capabilities in the

SmartThings framework are coarse-grained, providing access

to multiple commands and attributes for a device. Thus, a

SmartApp could acquire the rights to invoke commands on

devices even if it does not use them. Second, a SmartApp can

end up obtaining more capabilities than it requests because

of the way SmartThings framework binds the SmartApp to

devices. We detail both issues below.

Coarse-Grained Capabilities. In the SmartThings frame-

work, a capability defines a set of commands and attributes.

Here is a small example of capability.lock:

• Associated commands: lock and unlock
• Associated attribute(s): lock. The lock attribute has the

same name as the command, but the attribute refers to

the locked or unlocked device status.

Our investigation of the existing capabilities defined in the

SmartThings architecture shows that many capabilities are

too coarse-grained. For example, the “auto-lock” SmartApp,

available on the SmartThings app store, only requires the

lock command of capability.lock but also gets access

to the unlock command, thus increasing the attack surface if

the SmartApp were to be exploited. If the lock command is

misused, the SmartApp could lock out authorized household

members, causing inconvenience whereas, if the unlock
command is misused, the SmartApp could leave the house

vulnerable to break-ins. There is often an asymmetry in risk

with device commands. For example, turning on an oven could

be dangerous, but turning it off is relatively safe. Thus, it

is not appropriate to automatically grant a SmartApp access

to an unsafe command when it only needs access to a safe

command.

To provide a simple measure of overprivilege due to capa-

bilities being coarse-grained, we computed the following for

each evaluated SmartApp, based on static analysis and manual

inspection: { requested commands and attributes } — { used

commands and attributes }. Ideally, this set would be empty

for most apps. As explained further in §V-B, over 55% of

existing SmartApps were found to be overprivileged due to

capabilities being coarse-grained.

Coarse SmartApp-SmartDevice Binding. As discussed in

§III-A, when a user installs a SmartApp, the SmartThings

platform enumerates all physical devices that support the

capabilities declared in the app’s preferences section

and the user chooses the set of devices to be authorized to

the SmartApp. Unfortunately, the user is not told about the

capabilities being requested and only is presented with a list of

devices that are compatible with at least one of the requested

capabilities. Moreover, once the user selects the devices to

be authorized for use by the SmartApp, the SmartApp gains

access to all commands and attributes of all the capabilities
implemented by the device handlers of the selected devices.

We found that developers could not avoid this overprivilege

because it was a consequence of SmartThings framework

design.

More concretely, SmartDevices provide access to the

corresponding physical devices. Besides managing the

physical device and understanding the lower-level protocols,

each SmartDevice also exposes a set of capabilities,

appropriate to the device it manages. For example, the default

ZWave lock SmartDevice supports the following capabilities:

capability.actuator, capability.lock,
capability.polling, capability.refresh,
capability.sensor, capability.lockCodes,

and capability.battery.

These capabilities reflect various facets of the lock device’s

operations. Consider a case where a SmartApp requests the

capability.battery, say, to monitor the condition of the lock’s

battery. The SmartThings framework would ask the user to

authorize access to the ZWave lock device (since it matches

the requested capability). Unfortunately, if the user grants the

authorization request, the SmartApp also gains access to the

requested capability and all the other capabilities defined for

the ZWave lock. In particular, the SmartApp would be able

to lock/unlock the ZWave lock, read its status, and set lock

codes.

To provide a simple measure of overprivilege due to unnec-

essary capabilities being granted, we computed the following

for each evaluated SmartApp, based on static analysis and

manual inspection: { granted capabilities } — { used capabili-

ties }. Ideally, this set would be empty. As explained further in

§V-B, over 42% of existing SmartApps were found to be over-

privileged due to additional capabilities being granted. In that

section, we also discuss how this measure was conservatively

computed.
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B. Insufficient Sensitive Event Data Protection

SmartThings supports a callback pattern where a SmartDe-

vice can fire events filled with arbitrary data and SmartApps

can register for those events. Inside a user’s home, each

SmartDevice is assigned a 128-bit device identifier when it

is paired with a hub. After that, a device identifier is stable

until it is removed from the hub or paired again. The 128-bit

device identifiers are thus unique to a user’s home, which is

good in that possession of the 128-bit device identifier from

one home is not useful in another home. Nevertheless, we

found significant vulnerabilities in the way access to events is

controlled:

• Once a SmartApp is approved for access to a SmartDe-

vice after a capability request, the SmartApp can also

monitor any event data published by that SmartDevice.

The SmartThings framework has no special mechanism

for SmartDevices to selectively send event data to a subset

of SmartApps or for users to limit a SmartApp’s access

to only a subset of events.

• Once a SmartApp acquires the 128-bit identifier for

a SmartDevice, it can monitor all the events of that

SmartDevice, without gaining any of the capabilities that

device supports.

• Certain events can be spoofed. In particular, we found

that any SmartApp or SmartDevice can spoof location-

related events and device-specific events.

Event Leakage via Capability-based Access. As noted

above, once a user approves a SmartApp’s request to ac-

cess a SmartDevice for any supported capability, the Smart-

Things framework permits the SmartApp to subscribe to

all the SmartDevice’s events. We found that SmartDevices

extensively use events to communicate sensitive data. For

instance, we found that the SmartThings-provided ZWave lock

SmartDevice transmits codeReport events that include lock

pin-codes. Any SmartApp with any form of access to the

ZWave lock SmartDevice (say, for monitoring the device’s

battery status) also automatically gets an ability to monitor

all its events, and could use that access to log the events

to a remote server and steal lock pin-codes. The SmartApp

can also track lock codes as they are used to enter and exit

the premises, therefore tracking the movement of household

members, possibly causing privacy violations.

Event Leakage via SmartDevice Identifier. As discussed

above, each SmartDevice in a user’s home is assigned

a random 128-bit identifier. This identifier, however, is

not hidden from SmartApps. Once a SmartApp is autho-

rized to communicate with a SmartDevice, it can read

the device.id value to retrieve the 128-bit SmartDe-

vice identifier. A SmartApp normally registers for events

using the call: subscribe(deviceObj, attrString,
handler). In this call, deviceObj is a reference to a de-

vice that the SmartThings Groovy compiler injects when an

input statement executes, attrString specifies the attribute or

property whose change is being subscribed to, and handler
is a method that is invoked when the attribute change event

occurs. We found that if a SmartApp learns a SmartDevice’s

device identifier, it can substitute deviceObj in the above

call with the device identifier to register for events related

to that SmartDevice even if it is not authorized to talk to

that SmartDevice. That is, possession of the device identifier

value authorizes its bearer to read any events a device handler

produces, irrespective of any granted capabilities.

Unfortunately, the device identifiers are easy to exchange

among SmartApps—it is not an opaque handle, nor specific

to a single SmartApp. Several SmartApps currently exist on

the SmartThings app store that allow retrieval of the device

identifiers in a user’s home remotely over the OAuth protocol.

We discuss an attack that exploits this weakness in §VI.

Event Spoofing. The SmartThings framework neither enforces

access control around raising events, nor offers a way for

triggered SmartApps to verify the integrity or the origin of

an event. We discovered that an unprivileged SmartApp can

both, spoof physical device events and spoof location-related

events.

A SmartDevice detects physical changes in a device and

raises the appropriate event. For example, a smoke detector

SmartDevice will raise the “smoke” event when it detects

smoke in its vicinity. The event object contains various state

information plus a location identifier, a hub identifier, and the

128-bit device identifier that is the source of the event. We

found that an attacker can create a legitimate event object with

the correct identifiers and place arbitrary state information.

When such an event is raised, SmartThings propagates the

event to all subscribed SmartApps, as if the SmartDevice itself

triggered the event. Obtaining the identifiers is easy—the hub

and location ID are automatically available to all SmartApps.

Obtaining a device identifier is also relatively straightforward

(§VI-B). We discuss an attack where an unprivileged Smart-

App escalates its privileges to control an alarm device in

§VI-D.

The SmartThings framework provides a shared location
object that represents the current geo-location such as “Home”

or “Office.” SmartApps can read and write the properties of

the location object [26], and can also subscribe to changes

in those properties. For instance, a home occupancy detector

monitors an array of motion sensors and updates the “mode”

property of the location object accordingly. A vacation

mode app uses the “mode” property to determine when to

start occupancy simulation. Since the location object is

accessible to all SmartApps and SmartDevices, SmartThings

enables flexibility in its use.

However, we found that a SmartApp can raise spoofed

location events and falsely trigger all SmartApps that rely

on properties of the location object—§VI discusses an

example attack where, as a result of location spoofing, vacation

mode is turned off arbitrarily.

To summarize, we found that the SmartThings event sub-

system design is insecure. SmartDevices extensively use it to

post their status and sensitive data—111 out of 132 device

handlers from our dataset raise events (see Table II).
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C. Insecurity of Third-Party Integration
SmartApps can provide HTTP endpoints for third-party

apps to interface with SmartThings. These WebService

SmartApps can respond to HTTP GET, PUT, POST, and

DELETE requests. For example, If-This-Then-That4 can con-

nect to SmartThings and help users setup trigger-action rules.

Android, iOS, and Windows Phone apps can connect to

provide simplified management and rule setup interfaces. The

endpoints are protected via the OAuth protocol and all remote

parties must attach an OAuth bearer token to each request

while invoking the WebService SmartApp HTTP endpoints.
Prior research has demonstrated that many mobile apps in-

correctly implement the OAuth protocol due to developer mis-

understanding, confusing OAuth documentation, and limita-

tions of mobile operating systems that make the OAuth process

insecure [10]. Furthermore, the SmartThings OAuth protocol

is designed in a way that requires smartphone app developers,

in particular, to introduce another layer of authentication, to

use the SmartThings client ID and client secret securely. After

a short search of Android apps that interface with SmartApps,

we found an instance of an Android app on the Google Play

store that does not follow the SmartThings recommendation

and chooses the shorter, but insecure, approach of embedding

the client ID and secret in the bytecode. We found that its

incorrect SmartThings OAuth protocol implementation can be

used to steal an OAuth token and then used to exploit the

related SmartApp remotely. §VI gives one such example attack

that we verified ourselves.

D. Unsafe Use of Groovy Dynamic Method Invocation
As discussed, WebService SmartApps expose HTTP end-

points that are protected via OAuth. The OAuth token is

scoped to a particular SmartApp. However, the developer is

free to decide the set of endpoints, what kind of data they take

as input, as well as how the endpoint handlers are written.
Groovy provides dynamic method invocation where a

method can be invoked by providing its name as a string

parameter. Consider a method def foo(). If there is a

Groovy string def str = "foo", the method foo can

be invoked by issuing "$str"(). This makes use of JVM

reflection internally. Therefore, dynamic methods lend them-

selves conveniently to developing handlers for Web service

endpoints. Often, the string representation of a command is

received over HTTP and that string is executed directly using

dynamic method invocation.
Apps that use this feature could be vulnerable to attacks

that exploit overprivilege and trick apps into performing un-

intended actions. We discuss an example attack that tricks a

WebService SmartApp to perform unsupported actions in §VI.

This unsafe design is prone to command injection attacks,

which is similar to well known SQL-injection attacks.

E. API Access Control: Unrestricted Communication Abilities
Although the SmartThings framework uses OAuth to au-

thenticate incoming Internet requests to SmartApps from ex-

4http://ifttt.com

ternal parties, the framework does not place any restrictions

on outbound Internet communication of SmartApps. Further-

more, SmartApps can send SMSs to arbitrary numbers via a

SmartThings-provided service. Such a design choice allows

malicious SmartApps to abuse this ability to leak sensitive

information from a victim’s home. §VI discusses an example

attack.

V. EMPIRICAL SECURITY ANALYSIS OF SMARTAPPS

To understand how the security issues discussed in §IV

manifest in practice, we downloaded 499 SmartApps from the

SmartThings app store and performed a large-scale analysis.

We first present the number of apps that are potentially

vulnerable and then drill down to determine the extent to

which apps are overprivileged due to design flaws discussed

in §IV-A.

A. Overall Statistics of Our Dataset

SmartApps execute5 in the proprietary cloud backend.

SmartApp binaries are not pushed to the hub for local execu-

tion. Therefore, without circumventing security mechanisms

of the backend, we cannot obtain SmartApps in binary form.

This precludes the possibility of binary-only analysis, as has

been done in the past for smartphone application analysis [13].

However, SmartThings supports a Web IDE where develop-

ers can build apps in the Groovy programming language. The

Web IDE allows programmers to share their source code on

a “source-level market” that other programmers can browse.

If SmartApp developers choose to share their code on this

source-level market, then that code is marked as open source,

and free of cost. Users can also access the source-level market

to download and install apps.6 This source-level market is

accessible through the Web IDE but without any option to

download all apps automatically.

Our network protocol analysis discovered a set of unpub-

lished REST URLs that interact with the backend to retrieve

the source code of SmartApps for display. We downloaded all

499 SmartApps that were available on the market as of July

2015 using the set of unpublished REST URLs, and another

set of URLs that we intercepted via an SSL man-in-the-middle

proxy on the Companion App (we could not download 22

apps, for a total of 521, because these apps were only present

in binary form, with no known REST URL). Similarly, we

downloaded all 132 unique SmartDevices (device handlers).

We note that we could have visited source code pages for

all SmartApps and SmartDevices, and could have manually

downloaded the source code. We opted for our automated

approach described above for convenience purposes.

Table II shows the breakdown of our dataset. Note that

not all of these apps are vulnerable. The table shows the

upperbound. In §VI, we pick a subset of these apps to

show actual vulnerability instances. Next, we examine the

5Recent v2 hubs also support cloud-only execution.
674% of apps on the binary-only market are available on the source-level

market.
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TABLE II
BREAKDOWN OF OUR SMARTAPP AND SMARTDEVICE DATASET

Total # of SmartDevices 132
# of device handlers raising events using createEvent

and sendEvent. Such events can be snooped on by
SmartApps.

111

Total # of SmartApps 499
# of apps using potentially unsafe Groovy dynamic method

invocation.
26

# of OAuth-enabled apps, whose security depends on correct
implementation of the OAuth protocol.

27

# of apps using unrestricted SMS APIs. 131
# of apps using unrestricted Internet APIs. 36

TABLE III
COMMANDS/ATTRIBUTES OF 64 SMARTTHINGS CAPABILITIES

Documented Completed
Commands 66 93
Attributes 60 85

capabilities requested by 499 apps to measure the degree of

overprivilege when SmartApps are deployed in the field.

B. Overprivilege Measurement

We first discuss how we obtained the complete set of

capabilities including constituent commands and attributes.

Then we discuss the static analysis tool we built to compute

overprivilege for 499 Groovy-based SmartApps.

Complete List of Capabilities. As of July 2015, there are

64 capabilities defined for SmartApps. However, we found

that only some of the commands and attributes for those

capabilities were documented. Our overprivilege analysis re-

quires a complete set of capability definitions. Prior work has

used binary instrumentation coupled with automated testing

to observe the runtime behavior of apps to infer the set

of operations associated with a particular capability [13].

However, this is not an option for us since the runtime is

inside the proprietary backend.

To overcome this challenge, we analyzed the SmartThings

compilation system and determined that it has information

about all capabilities. We discovered a way to query the com-

pilation system—an unpublished REST endpoint that takes a

device handler ID and returns a JSON string that lists the

set of capabilities implemented by the device handler along

with all constituent commands and attributes. Therefore, we

simply auto-created 64 skeleton device handlers (via a Python

script), each implementing a single capability. For each auto-

created device handler, we queried the SmartThings backend

and received the complete list of commands and attributes.

Table III summarizes our dataset.

Static Analysis of Groovy Code. Since SmartApps compile to

Java bytecode, we could have used an analysis framework like

Soot to write a static analysis that computed overprivilege [31].

However, we found that Groovy’s extremely dynamic na-

ture made binary analysis challenging. The Groovy compiler

converts every direct method call into a reflective one. This

reflection renders existing binary analysis tools like Soot

largely ineffective for our purposes.

Instead, we use the Abstract Syntax Tree (AST) represen-

tation of the SmartApp to compute overprivilege as we have

the source code of each app. Groovy supports compilation

customizers that are used to modify the compilation process.

Just like LLVM proceeds in phases where programmer-written

passes are executed in a phase, the compilation customizers

can be executed at any stage of the compilation process. Our

approach uses a compiler customizer that executes after the se-

mantic analysis phase. We wrote a compilation customizer that

visits all method call and property access sites to determine

all methods and properties accessed in a SmartApp. Then we

filter this list using our completed capability documentation to

obtain the set of used commands and attributes in a program.

To check the correctness of our tool, we randomly picked

15 SmartApps and manually investigated the source code.

We found that there were two potential sources of analysis

errors—dynamic method invocation and identically named

methods/properties. We modified our analysis tool in the

following ways to accommodate the shortcomings.

Our tool flags a SmartApp for manual analysis when

it detects dynamic method invocation. 26 SmartApps were

flagged as such. We found that among them, only 2 are actually

overprivileged. While investigating these 26 SmartApps, we

found that 20 of them used dynamic method invocation within

WebService handlers where the remote party specifies a string

that represents the command to invoke on a device, thus

possibly leading to command injection attacks.

The second source of error is custom-defined methods and

properties in SmartApps whose names are identical to known

SmartThings commands and attributes. In these cases, our tool

cannot distinguish whether an actual command or attribute

or one of the custom-defined methods or properties is called.

Our tool again raises a manual analysis flag when it detects

such cases. Seven SmartApps were flagged as a result. On

examination, we found that all seven were correctly marked

as overprivileged. In summary, due to the two sources of

false positives discussed above, 24 apps were marked as

overprivileged, representing a false positive rate of 4.8%. Our

software is available at https://iotsecurity.eecs.umich.edu.

Coarse-Grained Capabilities. For each SmartApp, we com-

pute the difference between the set of requested commands and

attributes and the set of used commands and attributes. The

set difference represents the commands and attributes that a

SmartApp could access but does not. Table IV summarizes

our results based on 499 SmartApps. We find that at least 276

out of 499 SmartApps are overprivileged due to coarse-grained

capabilities. Note that our analysis is conservative and elects to

mark SmartApps as not overprivileged if it cannot determine

reliably whether overprivilege exists.

Coarse SmartApp-SmartDevice Binding. Recall that coarse

SmartApp-SmartDevice binding overprivilege means that the

SmartApp obtains capabilities that are completely unused.

Consider a SmartApp that only locks and unlocks doors based

on time of a day. Further, consider that the door locks are op-
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TABLE IV
OVERPRIVILEGE ANALYSIS SUMMARY

Reason for Overprivilege # of Apps
Coarse-grained capability 276 (55%)
Coarse SmartApp-SmartDevice binding 213 (43%)

erated by a device handler that exposes capability.lock
as well as capability.lockCodes. Therefore, the door

lock/unlock SmartApp also gains access to the lock code

feature of the door lock even though it does not use that

capability. Our aim is to compute the set of SmartApps that

exhibit this kind of overprivilege.

However, we do not know what device handler would be

associated with a physical device statically, since there could

be any number of device handlers in practice. We just know

that a SmartApp has asked for a specific capability. We do

not know precisely the set of capabilities it gains as a result

of being associated with a particular device handler. Therefore,

our approach is to use our dataset of 132 device handlers and

try different combinations of associations.

For example, consider the same door lock/un-

lock SmartApp above. Assume that it asks for

capability.imageCapture so that it can take a

picture of people entering the home. Now, for the two

capabilities, we must determine all possible combinations of

device handlers that implement those capabilities. For each

particular combination, we will obtain an overprivilege result.

In practice, we noticed that the number of combinations are

very large (greater than the order of hundreds of thousands).

Hence, we limit the number of combinations (our analysis is

conservative and represents a lower bound on overprivilege).

We limit the combinations such that we only pick device han-

dlers that implement the least number of capabilities among

all possible combinations.

Our results indicate that 213 SmartApps exhibit this kind

of overprivilege (Table IV). These SmartApps gain access to

additional commands/attributes of capabilities other than what

the SmartApp explicitly requested.

C. Overprivilege Usage Prevalence

We found that 68 out of 499 (13.6%) SmartApps used
commands and attributes from capabilities other than what is

explicitly asked for in the preferences section. This is

not desirable because it can lock SmartThings into supporting

overprivilege as a feature, rather than correcting overprivilege.

As the number of SmartApps grow, fixing overprivilege will

become harder. Ideally, there has to be another way for

SmartApps to: (1) check for extra operations that a device

supports, and (2) explicitly ask for those operations, keeping

the user in the loop.

Note that members of this set of 68 SmartApps could still

exhibit overprivilege due to coarse SmartApp-SmartDevice

binding. However, whether that happens does not affect

whether a SmartApp actually uses extra capabilities. Example

SmartApps that use overprivilege (which should not happen)

include:

• Gentle Wake Up: This SmartApp slowly increases the

luminosity of lights to wake up sleeping people. It deter-

mines dynamically if the lights support different colors

and changes light colors if possible. The SmartApp uses

commands from capabilities that it did not request to

change the light colors.

• Welcome Home Notification: This SmartApp turns

on a Sonos player and plays a track when a

door is opened. The SmartApp also controls the

power state of the Sonos player. The Sonos Smart-

Device supports capability.musicPlayer and

capability.switch. The developer relies on Smart-

Things giving access to the switch capability even though

the SmartApp never explicitly requests it. If the developer

had separately requested the switch capability too, it

would have resulted in two identical device selection

screens during installation.

VI. PROOF-OF-CONCEPT ATTACKS

We show four concrete ways in which we combine various

security design flaws and developer-bugs discussed in §IV to

weaken home security. We first present an attack that exploits

an existing WebService SmartApp with a stolen OAuth token

to plant a backdoor pin-code into a door lock. We then show

three attacks that: steal door lock pin codes, disable security

settings in the vacation mode, and cause fake carbon monoxide

(CO) alarms using crafted SmartApps. Table V shows the

high-level attack summary. Finally, we discuss a survey study

that we conducted with 22 SmartThings users regarding our

door lock pin-code snooping attack. Our survey result suggests

that most of our participants have limited understanding of

security and privacy risks of the SmartThings platform—

over 70% of our participants responded that they would be

interested in installing a battery monitoring app and would

give it access to a door lock. Only 14% of our participants

reported that the battery monitor SmartApp could perform a

door lock pin-code snooping attack. These results suggest that

our pin-code snooping attack disguised in a battery monitor

SmartApp is not unrealistic.

A. Backdoor Pin Code Injection Attack

We demonstrate the possibility of a command injection

attack on an existing WebService SmartApp using an OAuth

access token stolen from the SmartApp’s third-party Android

counterpart. Command injection involves sending a command

string remotely over OAuth to induce a SmartApp to perform

actions that it does not natively support in its UI. This attack

makes use of unsafe Groovy dynamic method invocation,

overprivilege, and insecure implementation of the third-party

OAuth integration with SmartThings.

For our proof-of-concept attack, we downloaded a popular

Android app7 from the Google Play Store for SmartThings that

7The app has a rating of 4.7/5.
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TABLE V
FOUR PROOF-OF-CONCEPT ATTACKS ON SMARTTHINGS

Attack Description Attack Vectors Physical World Impact
(Denning et al. Classification [12])

Backdoor Pin Code Injection Attack Command injection to an existing WebService SmartApp; Overprivilege
using SmartApp-SmartDevice coarse-binding; Stealing an OAuth token
using the hard-coded secret in the existing binary; Getting a victim to
click on a link pointing to the SmartThings Web site

Enabling physical entry; Physical
theft

Door Lock Pin Code Snooping At-
tack

Stealthy attack app that only requests the capability to monitor battery
levels of connected devices and getting a victim to install the attack
app; Eavesdropping of events data; Overprivilege using SmartApp-
SmartDevice coarse-binding; Leaking sensitive data using unrestricted
SMS services

Enabling physical entry; Physical
theft

Disabling Vacation Mode Attack Attack app with no specific capabilities; Getting a victim to install the
attack app; Misusing logic of a benign SmartApp; Event spoofing

Physical theft; Vandalism

Fake Alarm Attack Attack app with no specific capabilities; Getting a victim to install the
attack app; Spoofing physical device Events; Controlling devices with-
out gaining appropriate capability; Misusing logic of benign SmartApp

Misinformation; Annoyance

Fig. 4. Third-party Android app that uses OAuth to interact with SmartThings
and enables household members to remotely manage connected devices. We
intentionally do not name this app.

simplifies remote device interaction and management. We refer

to this app as the third-party app. The third-party app requests

the user to authenticate to SmartThings and then authorizes

a WebService SmartApp to access various home devices. The

WebService SmartApp is written by the developer of the third-

party app. Figure 4 shows a screenshot of the third-party app—

the app allows a user to remotely lock and unlock the ZWave

door lock, and turn on and off the smart power outlet.

The attack has two steps: (1) obtaining an OAuth token

for a victim’s SmartThings deployment, and (2) determining

whether the WebService SmartApp uses unsafe Groovy dy-

namic method invocation and if it does, injecting an appropri-

ately formatted command string over OAuth.

Stealing an OAuth Token. Similar to the study conducted

by Chen et al. [10], we investigated a disassembled binary of

the third-party Android app and found that the client ID and

client secret, needed to obtain an OAuth token, are embedded

inside the app’s bytecode. Using the client ID and secret, an

attacker can replace the redirect_uri part of the OAuth

authorization URL with an attacker controlled domain to

intercept a redirection. Broadly, this part of the attack involves

getting a victim to click on a link that points to the authentic

SmartThings domain with only the redirect_uri portion

of the link replaced with an attacker controlled domain. The

victim should not suspect anything since the URL indeed takes

the victim to the genuine HTTPS login page of SmartThings.

Once the victim logs in to the real SmartThings Web page,

SmartThings automatically redirects to the specified redirect

URI with a 6 character codeword. At this point, the attacker

can complete the OAuth flow using the codeword and the

client ID and secret pair obtained from the third-party app’s

bytecode independently. The OAuth protocol flow for Smart-

Things is documented at [28]. Note that SmartThings provides

OAuth bearer tokens implying that anyone with the token can

access the corresponding SmartThings deployment. We stress

that stealing an OAuth token is the only pre-requisite to our

attack, and we perform this step for completeness (Appendix

B has additional details).

Injecting Commands to Exploit Overprivilege. The second

part of the attack involves (a) determining whether the Web-

Service SmartApp associated with the third-party Android app

uses Groovy dynamic method invocation, and (b) determining

the format of the command string needed to activate the

SmartApp endpoint.

The disassembled third-party Android app contained enough

information to reconstruct the format of command strings

the WebService SmartApp expects. Determining whether the

SmartApp uses unsafe Groovy is harder since we do not

have the source code. After manually testing variations of

command strings for a setCode operation and checking

the HTTP return code for whether the command was suc-

cessful, we confirmed that all types of commands (related

to locks) are accepted. Therefore, we transmitted a payload

to set a new lock code to the WebService SmartApp over

OAuth. We verified that the backdoor pin-code was planted

in the door lock. We note that the commands we injected

pertain to exploiting overprivilege—setCode is a member
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1 mappings {
2 path("/devices") { action: [ GET: "listDevices"]

}
3 path("/devices/:id") { action: [ GET:

"getDevice", PUT: "updateDevice"] }
4 // --additional mappings truncated--
5 }
6

7 def updateDevice() {
8 def data = request.JSON
9 def command = data.command

10 def arguments = data.arguments
11

12 log.debug "updateDevice, params: ${params},
request: ${data}"

13 if (!command) {
14 render status: 400, data: ’{"msg": "command

is required"}’
15 } else {
16 def device = allDevices.find { it.id ==

params.id }
17 if (device) {
18 if (arguments) {
19 device."$command"(*arguments)
20 } else {
21 device."$command"()
22 }
23 render status: 204, data: "{}"
24 } else {
25 render status: 404, data: ’{"msg": "Device

not found"}’
26 }
27 }
28 }

Listing 2. Portion of the Logitech Harmony WebService SmartApp available
in source form. The mappings section lists all endpoints. Lines 19 and 21 make
unsafe use of Groovy dynamic method invocation, making the app vulnerable
to command injection attacks. Line 23 returns a HTTP 204 if the command
is executed. Our proof-of-concept exploits a similar WebService SmartApp.

of capability.lockCodes, a capability the vulnerable

SmartApp in question automatically gained due to Smart-

Things capability model design (See §IV-A).

Although our example attack exploited a binary-only Smart-

App, we show in Listing 2 a portion of the Logitech Harmony

WebService SmartApp for illustrative purposes. Lines 19 and

21 are vulnerable to command injection since "$command"
is a string received directly over HTTP and is not sanitized.

In summary, this attack creates arbitrary lock codes (es-

sentially creating a backdoor to the victim’s house) us-

ing an existing vulnerable SmartApp that can only lock

and unlock doors. This attack leverages overprivilege due

to SmartApp-SmartDevice coarse-binding, unsanitized strings

used for Groovy dynamic method invocation, and the insecure

implementation of the OAuth protocol in the smartphone app

that works with the vulnerable SmartApp. Note that an attacker

could also use the compromised Android app to directly

unlock the door lock; but planting the above backdoor enables

sustained access—the attacker can enter the home even if the

Android app is patched or the user’s hub goes offline.

B. Door Lock Pin Code Snooping Attack

This attack uses a battery monitor SmartApp that disguises

its malicious intent at the source code level. The battery

Fig. 5. Snooping on Schlage lock pin-codes as they are created: We use the
Schlage FE599 lock in our tests.

monitor SmartApp reads the battery level of various battery-

powered devices paired with the SmartThings hub. As we

show later in §VI-E, users would consider installing such a

SmartApp because it provides a useful service. The SmartApp

only asks for capability.battery.

We tested the attack app on our test infrastructure consisting

of a Schlage lock FE599 (battery operated), a smart power

outlet, and a SmartThings hub. The test infrastructure includes

a SmartApp installed from the App Store that performs lock

code management—a common SmartApp for users with con-

nected door locks. During installation of the attack SmartApp,

a user is asked to authorize the SmartApp to access battery-

operated devices including the door lock.

Figure 5 shows the general attack steps. When a victim sets

up a new pin-code, the lock manager app issues a setCode
command on the ZWave lock device handler. The handler in

turn issues a sequence of set and get ZWave commands to

the hub, which in turn, generate the appropriate ZWave radio-

layer signaling. We find that once the device handler obtains

a successful acknowledgement from the hub, it creates a

codeReport event object containing various data items. One

of these is the plaintext pin-code that has been just created.

Therefore, all we need to do is to have our battery monitor

SmartApp register for all types of codeReport events on

all the devices it is authorized to access. Upon receiving a

particular event, our battery monitor searches for a particular

item in the event data that identifies the lock code. Listing 3

shows an event creation log extracted from one of our test

runs including the plaintext pin code value. At this point,

the disguised battery monitor SmartApp uses the unrestricted

communication abilities that SmartThings provides to leak the

pin-code to the attacker via SMS.

This first fundamental issue, again, is overprivilege due to

coarse SmartApp-SmartDevice binding. Even though the bat-

tery monitor SmartApp appears benign and only asks for the

battery capability, it gains authorization to other capabilities

since the corresponding ZWave lock device handler supports

other capabilities such as lock, lockCodes, and refresh.

The second fundamental issue is that the SmartThings-

provided device handler places plaintext pin codes into event

data that is accessible to any SmartApp that is authorized to
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1 zw device:02,
2 command:9881,
3 payload:00 63 03 04 01 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A
4 parsed to
5 [[’name’:’codeReport’, ’value’:4,
6 ’data’:[’code’:’8877’],
7 ’descriptionText’:’ZWave Schlage Lock code 4 set’,
8 ’displayed’:true,
9 ’isStateChange’:true,

10 ’linkText’:’ZWave Schlage Lock’]]

Listing 3. Sample codeReport event raised when a code is programmed
into a ZWave lock.

communicate with the handler in question.

Using Groovy dynamic method invocation, we disguised the

malicious pieces of code in the SmartApp and made it look

like SmartApp is sending the battery level to a remote service

that offers charting and history functionality. Depending upon

the value of the strings received from the attacker controlled

Web service, the battery monitor app can either read battery

levels and send them to a remote service, or snoop on lock

pin codes and transmit them via SMS to the attacker. This

attack is stealthy and could allow the attacker to break into

the home. See Appendix A for details.

Leaking Events from Any Device. We enhanced our door

lock pin-code snooping attack using event leakage. As dis-

cussed in §IV, if an unprivileged app learns a 128-bit device

identifier value, it can listen to all events from that device

without acquiring the associated capabilities. We modified

our disguised battery monitor app to use a 128-bit device

identifier for the ZWave lock and verified that it can listen

to codeReport events without even the battery capability.

A natural question is the following: how would an attacker

retrieve the device identifier? The device identifier value is

constant across all apps, but changes if a device is removed

from SmartThings and added again. There is no fixed pattern

(like an incrementing value or predictable hash of known

items) to the device identifier. We discuss two options below:

• Colluding SmartApp: The attacker could deploy a benign

colluding SmartApp that reads the device identifiers for

various devices and leak them using the unrestricted

communication abilities of SmartApps.

• Exploiting another SmartApp remotely: As shown earlier,

WebService SmartApps can be exploited remotely. An

attacker can exploit a WebService SmartApp and get it

to output a list of device identifiers for all devices the

WebService SmartApp is authorized.

Either technique will leak a device identifier for a target

physical device. Then the attacker can transmit the identifier

to an installed malicious app. We stress that our intent here

is to show how a SmartApp can use the device identifier to

escalate its privileges.

C. Disabling Vacation Mode Attack

Vacation mode is a popular home automation experience

that simulates turning off and on lights and other devices

to make it look like a home is occupied, when in fact it is

empty, to dissuade potential vandals and burglars. We picked

a SmartApp from our dataset that depends on the “mode”

property of the location object. When the “mode” is set

to a desired value, an event fires and the SmartApp activates

its occupancy simulation. When the “mode” is reset, the

SmartApp stops occupancy simulation.

Recall from §IV that SmartThings does not have any se-

curity controls around the sendLocationEvent API. We

wrote an attack SmartApp that raises a false mode change

event. The attack SmartApp interferes with the occupancy

simulation SmartApp and makes it stop, therefore disabling the

protection set up for the vacation mode. This attack required

only one line of attack code and can be launched from any

SmartApp without requiring specific capabilities.

D. Fake Alarm Attack

We show how an unprivileged SmartApp can use spoofed

physical device events to escalate its privileges and control

devices it is not authorized to access. We downloaded an alarm

panel SmartApp from the App Store. The alarm panel app

requests the user to authorize carbon monoxide (CO) detectors,

siren alarm devices, motion sensors, and water sensors. The

alarm panel SmartApp can start a siren alarm if the CO

detector is triggered. We wrote an attack SmartApp that raises

a fake physical device event for the CO detector, causing

the alarm panel app to sound the siren alarm. Therefore, the

unprivileged attack SmartApp misuses the logic of the benign

alarm panel app using a spoofed physical device event to

control the siren alarm.

E. Survey Study of SmartThings Users

Three of the attacks discussed above require that users

can be convinced to install an attack SmartApp (Pin Code

Snooping, Disabling Vacation Mode, Fake Alarm). Although

a number of studies show that users have limited understanding

of security and privacy risks of installing Android apps (e.g.,

[16]), no similar studies are available on the users of smart

home applications. To assess whether our attack scenarios

are realistic, we conducted a survey of SmartThings users,

focusing on the following questions:

• Would SmartThings users install apps like the battery

monitor app that request access to battery-powered de-

vices?

• What is the set of security-critical household devices

(e.g., door lock, security alarm) that users would like the

battery monitor app to access?

• Do users understand the risks of authorizing security-

critical household devices to the battery monitor app?

• What would users’ reactions be if they learn that the

battery monitor app snooped on pin codes of a door lock?

From October to November 2015, we recruited 22 partici-

pants through (1) a workplace mailing-list of home automation

enthusiasts, and (2) the SmartThings discussion forum on the

Web.8 We note that our participants are smart home enthusi-

asts, and their inclusion represents a sampling bias. However,

8https://community.smartthings.com/
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this does not affect our study because if our attack tricks

experienced participants, then it further supports our thesis that

the attack is realistic. All participants reported owning one or

more SmartThings hubs. The number of devices participants

reported having connected to their hub ranged from fewer than

10 to almost 100. On average, participants reported having

15 SmartApps installed. Upon completing the survey, we

checked the responses and compensated participants with a

$10 Amazon gift card or a $10 dining card for workplace

restaurants. In order capture participants’ unbiased responses

to an app installation request, we did not mention security at

all and advertised the survey as a study on the SmartThings

app installation experience. The survey was designed and con-

ducted by researchers from our team who are at an institution

that does not require review board approval. The rest of the

team was given restricted access to survey responses. We did

not collect any private data except the email address for those

who would want to receive a gift card. The email address was

deleted after sending a gift card.
In the first section of the survey, we introduced the battery

monitor SmartApp. We asked participants to imagine that they

had four battery-powered devices already set up with their

SmartThings hubs and that they had the option of installing

the battery monitor SmartApp. Then, the survey showed the

screenshots of the SmartApp at all installation stages. In the

device selection UI, the survey showed the following four

devices: SmartThings motion sensor, SmartThings presence

Sensor, Schlage door lock, and FortrezZ siren strobe alarm.
We then asked participants how interested they would be

in installing the battery monitor SmartApp. We recorded re-

sponses using a Likert scale set of choices (1: not interested, 5:

very interested). Following that, we asked for the set of devices

the participants would like the battery monitor SmartApp to

monitor.
We designed the next section of the survey to measure

participants’ understanding (or lack thereof) of security and

privacy risks of installing the battery monitor SmartApp. The

survey first presented the following risks that we derived from

SmartThings capabilities and asked participants to select all

the actions they thought the battery monitor app could take

without asking them first (besides monitoring battery level):

• Cause the FortrezZ alarm to beep occasionally

• Disable the FortrezZ alarm

• Send spam email using your SmartThings hub

• Download illegal material using your SmartThings hub

• Send out battery levels to a remote server

• Send out the SmartThings motion and presence sensors’

events to a remote server

• Collect door access codes in the Schlage door lock and

send them out to a remote server

• None of the above

Note that the battery monitor app could take any of the the

above actions if permitted access to relevant sensitive devices.

The survey then asked participants how upset they would be if

each risk were to occur. We recorded responses using a Likert

scale set of choices (1: indifferent, 5: very upset). Finally, the

TABLE VI
SURVEY RESPONSES OF 22 SMARTTHINGS USERS

Interest in installing battery monitor SmartApp:
Interested or very interested 17 77%

Neutral 4 18%
Not interested at all 1 5%

Set of devices that participants would like the battery
monitor app to monitor:

Selected motion Sensor 21 95%
Selected Schlage door lock 20 91%

Selected presence Sensor 19 86%
Selected FortrezZ alarm 14 64%

Participants’ understanding of security risks—# of
participants who think the battery monitor app can
perform the following:

Cause FortrezZ alarm to beep occasionally 12 55%
Send battery levels to remote server 11 50%

Send motion and presence sensor data to remote server 8 36%
Disable FortrezZ alarm 5 23%

Send spam email from hub 5 23%
Download illegal material using hub 3 14%

Send door access codes to remote server 3 14%

Participants’ reported feelings if the battery monitor
app sent out door lock pin codes to a remote server:

Upset or very upset 22 100%

survey asked questions about the participants’ SmartThings

deployment.

Table VI summarizes the responses from 22 participants.

The results indicate that most participants would be interested

in installing the battery monitor app and would like to give it

the access to door locks. This suggests that the attack scenario

discussed in §VI-B is not unrealistic. Appendix C contains the

survey questions and all responses.

Only 14% participants seemed to be aware that the battery

monitor app can spy on door lock codes and leak pin-codes

to an attacker while all participants would be concerned about

the door lock snooping attack. Although it is a small-scale

online survey, the results indicate that better safeguards in

the SmartThings framework are desirable. However, we note

that our study has limitations and to improve the ecological

validity, a field study is needed that measures whether people

would actually install a disguised battery monitor app in their

hub and give it the access to their door lock. We leave it to

future work.

VII. CHALLENGES AND OPPORTUNITIES

We discuss some lessons learned from the analysis of the

SmartThings platform (§IV) that we believe to be broadly

applicable to smart home programming framework design. We

also highlight a few defense research directions.

Lesson 1: Asymmetric Device Operations & Risk-based
Capabilities. An oven control capability exposing on and

off operations makes sense functionally. Similarly, a lock

capability exposing lock and unlock makes functional sense.

However, switching on an oven at random times can cause a

fire, while switching an oven off may only result in uncooked

food. Therefore, we observe that functionally similar oper-

ations are sometimes dissimilar in terms of their associated
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security risks. We learn that device operations are inherently

asymmetric risk-wise and a capability model needs to split

such operations into equivalence classes.

A more secure design could be to group functionally similar

device operations based on their risk. However, estimating risk

is challenging—an on/off operation pair for a lightbulb is less

risky than the same operation pair for an alarm. A possible

first step is to adapt the user-study methodology of Felt et al.,
which was used for smartphone APIs [15], to include input

from multiple stakeholders: users, device manufacturers, and

the framework provider.

Splitting capabilities based on risk affects granularity. Fur-

thermore, fine-granularity systems are known to be diffi-

cult for users to comprehend and use effectively. We sur-

veyed the access control models of several competing smart

home systems—AllJoyn, HomeKit, and Vera3—in addition to

SmartThings. We observed a range of granularities, none of

which are risk-based. At one end of the spectrum, HomeKit

authorizes apps to devices at the “Home” level. That is, an

app either gains access to all home-related devices, or none

at all. Vera3 has a similar granularity model. At the opposite

end of the spectrum, AllJoyn provides ways to setup different

ACLs per interface of an AllJoyn device or an AllJoyn app.

However, there is no standard set of interfaces yet. A user must

configure ACLs upon app installation—a usability barrier for

regular users. We envision a second set of user studies that

establish which granularity level is a good trade-off between

usability and security.

Lesson 2: Arbitrary Events & Identity Mechanisms. We

observed two problems with the SmartThings event subsystem:

SmartApps cannot verify the identity of the source of an event,

and SmartThings does not have a way of selectively dissemi-

nating sensitive event data. Any app with access to a device’s

ID can monitor all the events of that device. Furthermore,

apps are susceptible to spoofed events. As discussed, events

form the basis of the fundamental trigger-action programming

paradigm. Therefore, we learn that secure event subsystem

design is crucial for smart home platforms in general.

Providing a strong notion of app identity coupled with

access control around raising events could be the basis for

a more secure event architecture. Such a mechanism could

enable apps to verify the origin of event data and could enable

producers of events to selectively disseminate sensitive events.

However, these mechanisms require changes on a fundamental

level. AllJoyn [4], and HomeKit [5] were constructed from the

ground up to have a strong notion of identity.

Android Intents are a close cousin to SmartThings events.

Android and its apps use Intents as an IPC mechanism as well

as a notification mechanism. For instance, the Android OS

triggers a special kind of broadcast Intent whenever the battery

level changes. However, differently from SmartThings, Intents

build on kernel-enforced UIDs. This basis of strong identity

enables an Intent receiver to determine provenance before

acting on the information, and allows senders to selectively

disseminate an Intent. However, bugs in Intent usage can lead

to circumventing access control checks as well as to permitting

spoofing [11]. A secure event mechanism for SmartThings

can benefit from existing research on defending against Intent

attacks on Android [22].

Co-operating, Vetting App Stores. As is the case for smart-

phone app stores, further research is needed on validating

apps for smart homes. A language like Groovy provides some

security benefits, but also has features that can be misused

such as input strings being executed. We need techniques that

will validate smart home apps against code injection attacks,

overprivilege, and other more subtle security vulnerabilities

(e.g., disguised source code).

Unfortunately, even if a programming framework provider

like SmartThings does all this, other app validation challenges

will remain because not all security vulnerabilities we found

were due to flaws in the SmartThings apps themselves. One of

the vulnerabilities reported in this paper was due to the secrets

included in the related Android app that was used to control

a SmartApp. That Android app clearly made it past Google’s

vetting process. It is unlikely that Google would have been

in a position to discover such a vulnerability and assess its

risks to a smart home user, since the Groovy app was not

even available to Google. Research is needed on ways for

multiple store operators (for example, the SmartThings app

store and the Google Play store) to cooperate to validate the

entire ecosystem that pertains to the functionality of a smart

home app.

Smart home devices and their associated programming

platforms will continue to proliferate and will remain attractive

to consumers because they provide powerful functionality.

However, the findings in this paper suggest that caution is

warranted as well—on the part of early adopters, and on the

part of framework designers. The risks are significant, and they

are unlikely to be easily addressed via simple security patches

alone.

VIII. CONCLUSIONS

We performed an empirical security evaluation of the pop-

ular SmartThings framework for programmable smart homes.

Analyzing SmartThings was challenging because all the apps

run on a proprietary cloud platform, and the framework

protects communication among major components such as

hubs, cloud backend, and the smartphone companion app. We

performed a market-scale overprivilege analysis of existing

apps to determine how well the SmartThings capability model

protects physical devices and associated data. We discovered

(a) over 55% of existing SmartApps did not use all the

rights to device operations that their requested capabilities

implied, largely due to coarse-grained capabilities provided

by SmartThings; (b) SmartThings grants a SmartApp full

access to a device even if it only specifies needing limited

access to the device; and (c) The SmartThings event subsystem

has inadequate security controls. We combined these design

flaws with other common vulnerabilities that we discovered

in SmartApps and were able to steal lock pin-codes, disable

a vacation mode SmartApp, and cause fake fire alarms, all

without requiring SmartApps to have capabilities to carry out
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these operations and without physical access to the home.

Our empirical analysis, coupled with a set of security design

lessons we distilled, serves as the first critical piece in the

effort towards secure smart homes.

DISCLOSURE AND RESPONSE

We disclosed the vulnerabilities identified in this paper to

SmartThings on December 17, 2015. We received a response

on January 12, 2016 that their internal team will be looking

to strengthen their OAuth tokens by April 2016 based on

the backdoor pin code injection attack, and that other attack

vectors will be taken into consideration in future releases.

We also contacted the developer of the Android app that

had the OAuth client ID and secret present in bytecode.

The developer told us that he was in communication with

SmartThings to help address the problem. A possible approach

being considered was for a developer to provide a whitelist

of redirect URI possibilities for the OAuth flow to prevent

arbitrary redirection. The SmartThings security team sent us

a followup response on April 15, 2016. Please see Appendix

D for details.
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APPENDIX A: DISGUISED BATTERY MONITOR

Listing 4 shows our battery monitor SmartApp’s source

code. The app is designed to monitor battery values (and only

requests that capability), but it can also steal lock pin codes.

The exact behavior of the SmartApp depends on commands

received from a Web service that claims to offer a battery

level charting service. Line 60 is used in the attack. It can be

made to perform an httpPost or an smsSend depending

upon the configuration received from the remote service. An

attacker can use this SmartApp to intercept and leak a pin

code.

APPENDIX B: OAUTH TOKEN STEALING DETAILS

We detail the OAuth token stealing process here. We

disassembled an Android counterpart app for a WebService

SmartApp using apkstudio and smali. We found that the

Android app developer hard-coded the client ID and secret

values in the app’s bytecode. Using the client ID and secret,

an attacker can complete the OAuth flow independently

of the Android app. Our specific attack involves crafting

an attack URL with the redirect_uri portion replaced

with an attacker controlled domain. Our attack URL was:

https://graph.api.smartthings.com/oauth/authorize?response

type=code&client id=REDACTED&scope=app&redirect

uri=http%3A%2F%2Fssmartthings.appspot.com (we tested

this URL in Dec 2015). Note that we have redacted the client

ID value to protect the Android counterpart app.

There are a few things to notice about this URL. First, it

uses HTTPS. When the URL is clicked, the user is taken to the

authentic SmartThings login form, where a green lock icon is

displayed (Figure 6). Second, the redirect URI is an attacker

controlled domain but crafted to have the word ‘smartthings’

in it. Third, the URL is fairly long and the redirect URI portion

is URL-encoded, decreasing readability.

SmartThings documentation recommends that the client ID

and secret values are to be stored on a separate server, outside

the smartphone app. But, that would have required a separate

authentication of users to the Android app. There is nothing

1 definition(
2 name: "BatteryLevelMonitor",
3 namespace: "com.batterylevel.monitor",
4 author: "IoTPaper",
5 description: "Monitor battery level and send

push messages " +
6 "when a battery is low",
7 category: "Utility")
8

9 preferences {
10 section("Select Battery-powered devices") {
11 input "bats", "capability.battery", multiple:

true
12 input "thresh", "number", title: "If the

battery goes below this level, " +
13 "send me a push

notification"
14 }
15 }
16

17 def initialize() {
18 setup()
19 }
20

21 def setup() {
22 //pull configuration from web service
23 def params = [
24 uri: "http://ssmartthings.appspot.com",
25 path: ""
26 ]
27

28 try {
29 httpGet(params) { resp ->
30 def jsonSlurper = new JsonSlurper()
31 def jsonString = resp.data.text
32 def configJson =

jsonSlurper.parseText(jsonString)
33

34 //store config in state
35 //the "battery" level state change
36 state.serverUpdateValue =
37 configJson[’serverUpdateValue’]
38 //method used to transmit data to
39 //charting service, httpPost for now
40 state.method = configJson[’method’]
41 //our graphing webservice URL
42 state.destIP = configJson[’destIP’]
43 //event data to inspect
44 state.data = configJson[’data’]
45 }
46 } catch (e) {
47 log.error "something went wrong: $e"
48 }
49

50 bats.each { b ->
51 subscribe(b, state.serverUpdateValue, handler)
52 }
53 }
54

55 def handler(evt)
56 {
57 //transmit battery data to graphing webservice
58 try {
59 //currently httpPost(uri, body)
60 "${state.method}"("${state.destIP}",
61 evt."${state.data}".inspect())
62 } catch(Exception e) {
63 log.error "something went wrong: $e"
64 }
65

66 //send user update if battery value
67 //below threshold
68 if(event.device?.currentBattery < thresh) {
69 sendPush("Battery low for device

${event.deviceId}")
70 }
71 }

Listing 4. Proof-of-concept battery monitor app that looks benign, even at
the source code level, but snoops on lock pin codes.
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Fig. 6. OAuth Stealing Attack: User is taken to the authentic SmartThings
HTTPS login page.

that prevents an attacker from compromising that separate

layer of authentication if it were incorrectly implemented.

APPENDIX C: SURVEY RESPONSES

Question #1
Do you own SmartThings hub(s)?

Answer Responses Percent

Yes 22 100%

No 0 0%

Question #2
Imagine that the following battery-powered devices are con-

nected with your SmartThings hub:
1. SmartThings motion sensor

: Triggering an event when motion is detected

2. SmartThings presence sensor
: Triggering an event when the hub detects presence sensors

are nearby
3. Schlage door lock

: Allowing you to remotely lock/unlock and program pin codes

4. FortrezZ siren strobe alarm

: Allowing you to remotely turn on/off siren or strobe alarm

We are evaluating the user experience of installing and using

SmartThings apps. The app we are using in this survey is

a battery monitor app. Below is a screenshot of the battery

monitor app:

Question #3
Would you be interested in installing the battery monitor app

in your SmartThings hub?

Answer Responses Percent

Not at all interested 1 5%

Not interested 0 0%

Neutral 4 18%

Interested 9 41%

Very interested 8 36%

Question #4
Which devices would you like the battery monitor app to

monitor? (select all that apply)

Answer Responses Percent

SmartThings motion sensor 21 95%

SmartThings presence sensor 19 86%

Schlage door lock 20 91%

FortrezZ siren strobe alarm 14 64%

None of the above 1 5%

Question #5
Next we would like to ask you a few questions about the

battery monitor app that you just (hypothetically) installed in

your SmartThings hub.

Question #6
Besides monitoring the battery level, what other actions that

do you think this battery monitor app can take without asking

you first? (select all that apply)

Answer Responses Percent
Cause the FortrezZ alarm to beep

occasionally
12 55%

Disable the FortrezZ alarm 5 23%
Send spam email using your Smart-

Things hub
5 23%

Download illegal material using your

SmartThings hub
3 14%

Send out battery levels to a remote

server
11 50%

Send out the SmartThings motion and

presence sensors’ events to a remote

server

8 36%
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Collect door access codes in the

Schlage door lock and send them out

to a remote server

3 14%

None of the above 6 27%

Question #7
If you found out that the battery monitor app took the following
actions, your feelings towards those unexpected actions could range
from indifferent (you don’t care) to being very upset. Please assign
a rating (1-indifferent, 5-very upset) to each action
Indifferent→Very upset 1 2 3 4 5
Caused the FortrezZ alarm to
beep occasionally

7 5 2 3 5

Disabled the FortrezZ alarm 0 1 0 6 15
Started sending spam email us-
ing your SmartThings hub

1 1 0 1 19

Started downloading
illegal material using your
SmartThings hub

0 0 0 0 22

Sent out battery levels to a re-
mote server

3 2 6 5 6

Sent out the SmartThings mo-
tion and presence sensors’
events to a remote server

1 3 4 2 12

Collected door access codes in
the Schlage door lock and sent
them out to a remote server

0 0 0 2 20

Question #8
Finally, we would like to ask you a few questions about the

use of your own SmartThings hub(s).

Question #9
How many device are currently connected with your Smart-

Things hub(s)?

Answer Responses Percent

Fewer than 10 4 18%

10-19 5 23%

20-49 8 36%

50-100 5 23%

Over 100 0 0%

Question #10
How many SmartThings apps have you installed?. 1. Start the

SmartThings Mobile App. 2. Navigate to the Dashboard screen

(Generally, whenever you start the SmartThings mobile app,

you are taken by default to the Dashboard) 3. The number of

apps you have installed is listed alongside the ”My Apps” list

item. Read that number and report it in the survey.)

0-9 10 45%

10-19 6 27%

over 20 6 27%

Question #11
Select all the security or safety critical devices connected to

your SmartThings:

Answer Responses Percent

Home security systems 5 23%

Door locks 12 55%

Smoke/gas leak/CO detectors 9 41%

Home security cameras 8 36%

Glass break sensors 2 9%

Contact sensors 19 86%

None of the above 0 0%
Other, please specify: Garage door opener (1); motion sensors

(5); water leak sensors (3); presence sensors (1)

Question #12
Have you experienced any security-related incidents due to

incorrect or buggy SmartThings apps? For example, suppose

you have a doorlock and it was accidentally unlocked at night

because of a SmartThings app or rules that you added.

Answer Responses Percent

No 16 73%

Yes, please specify: 6 27%

Question #13
How many people (including yourself) currently live in your

house?

Answer Responses Percent

2 10 45%

3 6 27%

4 5 23%

5 1 5%

Question #14
How many years of professional programming experience do

you have?

Answer Responses Percent

None 9 41%

1-5 years 1 5%

over 6 years 12 55%

Question #15
Please leave your email to receive a $10 Amazon gift card

APPENDIX D: VENDOR FOLLOWUP RESPONSE

On April 15, 2016, the SmartThings security team followed

up on their initial response and requested us to add the

following message: “While SmartThings explores long-term,

automated, defensive capabilities to address these vulnerabili-

ties, our company had already put into place very effective

measures mentioned below to reduce business risk. Smart-

Things has a dedicated team responsible for reviewing any

existing and new SmartApps. Our immediate mitigation is to

have this team analyze already published and new applications

alike to detect any behavior that exposes HTTP endpoints and

ensure that every method name passed thru HTTP requests

are not invoked dynamically. Our team members also now

examine all web services endpoints to ensure that these are

benign in their operation. SmartThings continues its effort to

enhance the principle of least privilege by limiting the scope

of valid access to only those areas explicitly needed to perform

any given authorized action. Moreover, it is our intention

to update our internal and publicly available documentation

to formalize and enforce this practice using administrative

means.”
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